IITEIIITIOIAL HIUIIIL OF

SOLIDS a
STHIIGTIIIIES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 38 (2001) 5625-5645

Adaptive multilayer perceptron networks for detection of
cracks in anisotropic laminated plates

Y.G. Xu, G.R. Liu ", Z.P. Wu, X.M. Huang

Department of Mechanical and Production Engineering, Center for Advanced Computations in Engineering Science (ACES), National
University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore

Received 18 April 2000; in revised form 9 October 2000

Abstract

In this study, an adaptive multiplayer perceptron (MLP) technique is proposed for the detection of cracks in an-
isotropic laminated plates. The displacement response on the surface of plate, excited by a time-harmonic line load, is
used as the input of the MLP. The crack parameters that specify the location and size of the cracks in the anisotropic
laminated plates are taken as the output of the MLP. The MLP model is first trained to establish the nonlinear re-
lationship between the scattered surface displacement response and the corresponding location and size of the cracks.
The scattered displacement responses required in training samples are calculated from the strip element method (SEM).
To facilitate this training process, the correlation analysis for the outputs of neurons in the hidden layers of the MLP
model is carried out to optimize the MLP architecture. A modified back-propagation learning algorithm with a dy-
namically adjusted learning rate and an additional jump factor is developed to speed up the convergence of the MLP
model in the training process. The concept of orthogonal array is adopted to generate the representative combinations
of the crack parameters, which significantly reduces the number of samples while maintaining the completeness of
sample data. The well-trained model is then used to reconstruct the crack parameters by feeding in the measured
displacement response on the plate surface. These reconstructed crack parameters are further examined by comparing
their resulting displacement response from the SEM forward calculation with the measured displacement response. If
the comparison is satisfactory, the reconstructed crack parameters would be considered to be true and the computation
ends. Otherwise, the MLP model would go another round of re-training process until the satisfactory reconstruction is
obtained. The proposed technique was verified numerically using an anisotropic laminated plate [C0/G + 45/G-45],
with four types of horizontal cracks. The verification includes the detection for both the location and the size of cracks
using the simulated response data with and without noise. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

With the increasing application of the composite materials in aircraft, aerospace, mechanical engi-
neering, civil engineering, etc., detection of cracks or flaws in composite materials has become more and
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more important. Although conventional ultrasonic techniques, such as ultrasonic B- and C-scan tech-
niques, have been widely used for this purpose and also obtained a reasonable amount of success, diffi-
culties still remain for various types of the practical applications. The reason is that these conventional
techniques are based on the real-time measurements of reflected or transmitted pulses from the incident
body waves such as longitudinal waves. Very often, these measured pulse signals are not sufficient enough
to provide the clear image of the cracks or flaws due to either the inhomogeneous nature of materials or too
many wave reflections generated by the different laminate interfaces in the composite plate.

In order to overcome the difficulties associated with the ultrasonic wave reflection, many new detection
techniques have been developed recently (Karim and Kundu, 1989, 1990; Karim et al., 1989; Liu and Lam,
1994; Doebling et al., 1996; Luo and Hanagud, 1997). One of them is to infer the location and size of cracks
from the elastic low-frequency waves scattered by these cracks or flaws (Liu and Achenbach, 1994, 1995;
Liu and Lam, 1994; Liu et al., 1995, 1996). This technique actually originates from the investigation on the
waves scattered by the cracks or flaws hidden inside the laminates. Much work of this kind investigation has
been done so far. For examples, Karim and Kundu (1989), Karim et al. (1989, 1992a,b) studied the
scattering of elastic waves due to cracks and flaws in plates using the combination of finite element method
(FEM) and the guided wave expansions. Kundu and Hassan (1987) and Kundu (1988) investigated the
dynamic interaction between two interface cracks and the transient behavior of an interfacial crack in
composite plates. Karunasena et al. (1991) calculated the scattering of the plane-strain waves due to the
cracks using the combined FEM and Lamb wave modal expansion method. Liu et al. (1991) studied the
transient scattering of Rayleigh Lamb waves of a surface-breaking crack using the FEM and boundary
element method (BEM). Their calculated results were also compared with the measured ones. Datta et al.
(1992) and Liu and Datta (1993) later applied the similar method to investigate the scattering of both
impact and ultrasonic waves due to the cracks in a composite plate. In order to improve the computational
efficiency, Liu and Lam (1994), Liu and Achenbach (1994, 1995), Liu et al. (1995, 1996), Lam et al. (1997)
and Wang et al. (1998) used a strip element method (SEM) to investigate both horizontal and vertical
cracks in the composite laminated plates subjected to the moving or fixed source loads. The numerical
analysis were carried out in both time and frequency domains, and the calculated results were compared
with the ones in noncrack cases. All these works demonstrated that the scattered elastic waves are sig-
nificantly related to the location and size of cracks or flaws, but these studies can not be directly employed
for the detection of cracks or flaws from the scattered waves. This is because that analysis for the scattered
waves with the given crack or flaw configuration is referred to the forward solution, while the detection for
the cracks or flaws from the scattered waves is referred to an inverse problem. The inversion for this kind of
problems is mathematically nonlinear, analytically intractable and hence not easy. So the established de-
tection technique based on the scattered waves is not yet available, although there are some polynomial
formulae proposed so far for approximately estimating the larger cracks in laminated plates (Liu and Lam,
1994; Lam et al., 1997).

With the developments of artificial intelligent techniques, neural networks (NN) have provided an ef-
fective tool for solving this kind of inverse problems. Indeed, there is an increasing interest in employing the
NN techniques to detect structural damages in recent years. Wu et al. (1992) adopted an NN model to
portray the structural behavior before and after damage in terms of the frequency response function, and
then used this trained model to detect the location and extent of damages by feeding in measured dynamic
response. Klenke and Paez (1994) used two probabilistic techniques to detect the damages in the aerospace
housing components, one of which involved a probabilistic NN model. Rhim and Lee (1995) used the MLP
model to identify the damages in a composite cantilevered beam, in which the damage was modeled as
delamination in the FEM model of beam. Masri et al. (1996) used a MLP model to detect the changes in the
dynamic characteristics of a structure-unknown system. Luo and Hanagud (1997) used the NN model with
the dynamic learning rate steepest descent (DSD) method to carry out the real-time flaw detection of
composite materials. Zhao et al. (1998) used a counter-propagation NN model to identify the damages in
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beams and frames. Liu et al. (1999) used the BRANN model to detect the impact damages in carbon fiber
reinforced polymer composite laminates, the transient acoustic emission waveforms detected from the
surface of materials were used as the input of BRANN model. The more application of the NN model in
the area of damage detection can be found in Bishop (1994) and Doebling et al. (1996).

In this study, a new technique using the adaptive MLP model for the detection of cracks in anisotropic
laminated plates is proposed. The displacement response on the surface of plates, excited by a time-har-
monic input load, is used as the input of the adaptive MLP model. The crack parameters that specify the
location and size of cracks are taken as the output of MLP. Similar to what were described by Chang et al.
(2000), this MLP model is first trained using the elaborated sample data of various types of the crack
possibilities and their resulting displacement responses on the surface of plate that are calculated using the
SEM model. To facilitate this training process, the correlation analysis for the outputs of neurons in the
hidden layers of MLP model is carried out to optimize the MLP architecture. A modified back-propagation
(BP) learning algorithm with a dynamically adjusted learning rate and an additional jump factor is de-
veloped to alleviate the oscillation and stagnation in the training process so as to speed up the convergence
of the MLP model. The concept of orthogonal array (OA) is adopted to generate the representative
combinations of the crack parameters for significantly reducing the number of samples while maintaining
its data completeness. This trained MLP model is then used to reconstruct the crack location and size
parameters in the anisotropic laminated plate by feeding in the measured surface displacement response.
These reconstructed crack parameters are taken into the SEM model to calculate the displacement response
on the plate surface, so as to examine whether or not these calculated response matches satisfactorily the
measured ones. If not, the MLP model would go through another round of retraining process until the
satisfactory match is reached. To verify the proposed technique numerically, an anisotropic laminated plate
[CO/G + 45/G-45], with horizontal crack was investigated for four different crack situations. The effect of
noise involved in the displacement response on the detection results was also examined. Numerical results
show that the proposed technique is very effective for the detection of cracks in anisotropic laminated
plates.

2. Problem studied and solving strategy
2.1. Problem studied

Fig. 1 shows a composite laminated plate that consists of M anisotropic layers. The thickness of the plate
in z direction is denoted by H, both the length and depth of the plate in x and y direction, respectively, are
considered to be infinite. This problem is hence two-dimensional. A horizontal crack was assumed to hide
inside this plate, whereby its location is defined by the distance a. (from the plane x = 0 to the left tip of
crack in x direction) and the depth d. (from the upper surface of the plate to the center of crack in z di-
rection). The size of crack is denoted by /.
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Fig. 1. A M-layers anisotropic laminated plate with a horizontal crack.
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Fig. 2. A MLP model with two hidden layers.

The material of each layer in this plate is anisotropic and inhomogeneous. The elastic constants, the fiber
orientation and the density of the mth (m =1,...,M) layer are denoted by c,; (i,j =1,6), ¢,, and p,,
respectively.

A time-harmonic input load ¢,, which does not vary in the y direction, was applied on the upper surface
of the plate. This load was expressed as

qo = qoe—imt ( 1 )

where g, and o are the load amplitude and frequency, respectively. The excited displacement response on
the surface of this plate consists of a number of waves scattered due to the crack. It is used as the known
information for the crack detection.

The objective of this study is to examine the feasibility of using the adaptive MLP model (as shown in
Fig. 2) to detect the location and size of crack hidden in this plate. The excited surface displacement re-
sponse is used as the input of the MLP model.

2.2. Solving strategy

The proposed solving strategy for the studied problem is shown in Fig. 3. It includes (i) initial training of
the MLP model using the elaborated sample data, (ii) reconstruction of the crack parameters using the
trained MLP model by feeding in the measured displacement response on the surface of plate. If the re-
constructed crack parameters result in the displacement response that significantly differs from the mea-
sured ones, the MLP model should be re-trained in order to obtain an improved set of crack parameters.

The purpose of initial training is to establish a preliminary nonlinear mapping relationship between the
excited displacement response amplitudes on the surface of plate, D = {d;,i =1,...,n}, and the crack
parameters, P = {a.,d., I.}. The training samples consist of sets of assumed P, (i = 1,...,p), representing p
types of crack possibilities and the resulting scattered displacement responses that are calculated using the
SEM model. Details on the selection of training samples will be discussed in Section 4.3.

After the initial training of the MLP model, reconstruction of the crack parameters begins by feeding the
measured response amplitudes D,, into the MLP model. The output of the MLP model would be the re-
constructed crack parameters P,. These reconstructed parameters are then taken into the SEM model to
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Fig. 3. Proposed strategy for training and application of the MLP model.

calculate the corresponding response amplitudes D.. A comparison between the calculated responses D,
and the measured ones D,, is made based on the following Euclidean criterion,

Eu = ||De = Dnll 2)

If Eu is larger than the permissible error Ec, then the MLP model should be retrained on-line using the
adjusted sample data that contain D, and P,. The retrained MLP model is then used to reconstruct the
crack parameters again by feeding in the measured D,,. This procedure would be repeatedly conducted until
Eu < Ec, which means that the crack parameters finally reconstructed would be able to produce the surface
displacement response that is sufficiently close to the measured ones.

The proposed strategy is conceptually straightforward. There are however two key factors governing the
success of this technique in the practical applications. One is that there must be an effective numerical
method for calculating the elastic waves scattered due to the cracks in the composite laminated plate, so as
to provide the necessary training samples. This requirement is especially true for the cases where the sample
data are expensive or difficult to obtain experimentally. Only if these sample data are accurately obtained,
the MLP model trained by these data could truthfully simulate the real relationship between the crack
parameters and the resulting displacement response on the plate surface. Another governing factor would
be that the MLP model shall have the proper network architecture, the good learning algorithm and also
trained by the proper sample set, so as to ensure the MLP model to have speedy and accurate convergence.
It also ensures the completeness of the trained MLP model for various types of applications. These two
issues will be addressed in more detail below.

3. Calculation for scattered displacement response using strip element method

As stated above, effective calculation for the displacement response scattered by the cracks is one of keys
to implement the proposed detection technique. As SEM has been verified to be particularly effective for
analyzing the scattering of the elastic waves in the composite laminated layers (Liu and Achenbach, 1995),
it was thus adopted in this study for the calculation of the scattered displacement responses.
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For the anisotropic laminated plate with a horizontal crack shown in Fig. 1, it was divided into four sub-
domains denoted by I, II, III and IV, respectively. In each sub-domain, n; (i = I, II, III and VI) strip el-
ements were further divided along its thickness. In each strip element, saying the strip element &, the
governing differential equation (in the case free of body force) can be drawn as follows by following the
Kausel’s formulation:

Pk% = Dkxx%"_ ZDkryZilé];-i-Dk}yaaz;?{ (3)
where the coefficient matrices Dy, Dy, and Dy, are given in Appendix A, and the displacements U,

Ui(x,2) = {u(x,2)  wi(x,2) }' (4)
According to SEM’s theory, it is expressed as:

Ui (x,2) = Ni(2) Vi (x)e " (5)

where ¢ and w are the time and angular frequency, respectively. i = v/—1. Interpolation function matrix
Ni(z) and displacement amplitude matrix V;(x) are given below

Ni(z) = {(1—3;;+2;—§)1 4(§_;_§)1 (—§+2;—§)1} (6)

AOER AN AN AN (7)

where 7 is a 2 x 2 identify matrix and / is the thickness of the strip element k. V}y, Vi and V,, are the
displacement amplitude vectors on the lower, middle and upper node lines, respectively.
Applying the principle of virtual work to the studied strip element k, we have

h
8Vl qr = dV,'S, +/0 SU, W, dx (8)

where ¢; is the external traction vector acting on the three node lines of the element k. S; is the stress vector
on the boundary lines of the element k. By integrating over the thickness of the element, and requiring that
the result is valid for arbitrary virtual displacements 3V}, the following differential equation for the studied
element k is obtained:

oV Vi

+ Ap = + Ap Vi — > MV

= —Akza—yz 3 9)

where g, is the amplitude vector of ¢,. Matrices Ay, Ay1, Ao and M, are given in Appendix A.

Assembling Eq. (9) for all the strip elements in one sub-domain as what is done in FEM, and analytically
solving the integrated equation using the method proposed by Liu and Achenbach (1994) with the con-
sideration of the boundary conditions in the studied sub-domain #, an algebraic equation can be drawn as
follows:

R, =KV, + S (10)

where R,;, V,; and S,; are the external traction vector, displacement vector and the equivalent external force
vector, respectively. All these vectors act only on the vertical boundaries of the studied sub-domain i. K,; is
the stiffness matrix for this sub-domain.

For each sub-domain i (i = I, II, III and IV), the equation similar to Eq. (10) can be obtained using the
same method. Then, integrating these equations for all the sub-domains using the displacement continuity
and force equilibrium conditions at the junctions of sub-domains, a set of integrated equations for the
cracked laminate are obtained as follows,
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R=KV+S (11)

where R, V and S are the external tractions, displacements and the equivalent external forces acting on all
the junctions, respectively. For the given R and the forces on the free surfaces of crack, the displacements V
can be obtained by solving the above equations. Finally, the whole displacement field in the studied plate
can be obtained. As expected, the displacement field is affected by the location and size of crack hidden in
this plate.

4. Adaptive multiplayer perception model

Fig. 2 shows a typical MLP Model. It consists of input, output layer and two hidden layers. Each layer
contains some neurons with a nonlinear activation function. In theory, this MLP model can be used to
model arbitrary complex nonlinear relationship between the input and output of the studied system.
However, the successful application of MLP in practical engineering depends greatly on the topologic
architecture, the learning algorithm and the training samples chosen for the MLP model.

4.1. Multiplayer perception architecture

Generally, the number of neurons in the input and output layers for the MLP model is directly deter-
mined by the studied problem. In this study, they are the number of surface nodes at which the dis-
placement response is acquired and the number of crack parameters to be reconstructed, respectively.

Two hidden layers have been usually recommended for most of the structural problems (Masri et al.,
1996), although one hidden layer was theoretically demonstrated to be sufficient to model arbitrary com-
plex nonlinear relationship (Chen and Chen, 1996). So the most difficult task related to the MLP archi-
tecture is to determine the number of neurons in each hidden layer, which is usually completed by using
numerical experiments (trial and error). It is often tedious.

One effective method is proposed in this study to tackle this problem. The basic idea is given as follows:
For a hidden layer being adjusted, a larger neuron number is selected at first, the correlativity y,; between
the output of the ith neuron and the output of the jth neuron, and a criterion parameter ¢; are then cal-
culated as follows.

0;j ..
Vi = T = o = E Vgr  BJ=1m (12)
0i0; j=1
where
P P P \P P \P \P
5_72:02 721(:1 Oik 5_72:02 721(:1 Ojk 5_'7§:o_0_72k:1 Oik D 1 Oji (13)
L ik ’ J Jk ) y L)
k=1 p P P e p

m is the current number of neurons, p is the number of the total training samples, o, is the output of the ith
neuron for the kth sample.

If Ppax = max(y;) = 7. (in general, y, = 0.8-0.9) in this hidden layer, those neurons with larger o; value
would be first cancelled out. Then, v,,,, and o; are calculated again with the adjusted number of neurons.
This process is continually repeated until y,,,, < 7. in this hidden layer. It is obvious that the over abun-
dance of neurons in one hidden layer can be eliminated by this way. The proper MLP architecture is then
obtained.
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4.2. Learning algorithm

Most of the training for the MLP model is based on the back propagation (BP) learning algorithm, this
algorithm usually results in oscillation or stagnation in the training process. In this study, a modified BP
learning algorithm with a dynamically adjusted learning rate and a jump factor is adopted to solve this
problem and thus speed up the convergence of the MLP model.

Mathematically, the output of the MLP model can be expressed as follows:

where

W:{wf.‘j} i=1,....m, j=1,....m;, k=123

0={0}y j=1,....m;, k=123

wf; and 0;7 are the weight and bias term of networks, m; and m; are the number of neurons in the ith and the
Jjth layer, respectively. D is the input of the MLP model.

Training of the MLP model is actually referred to a process of determining the weight matrix W and
the bias matrix 6, so as to make the output P={p,i=1,...,m3} equal to its targeted value
P.={py, i=1,...,ms}. That means the error norm E(W, 6)

1<& Di 2
EW,0) == "(1-£ 15
( ) 2 ; ( D ) ( )
becomes smaller than a tolerable value.
As the bias term can be treated as a special weight in the training of the MLP model, the adjustment for

both W and 6 can be written as:

Wl = w4+ AW (16)
AW = OE(W,0) on OE(W,0) (17
a W W=Wwr a W W=wr-1

where 7 is defined as the learning rate, o is the momentum rate, and r is the number of iterations in training.
The derivatives in Eq. (17) are matrices whose arguments can be found as,

QE(W,0) _ QE(W,0) Onet; Kookl
owh; Onet}  Owj; i (18)

Note that net_f and of represent the input and the output of the ith neuron in the kth layer, respectively.

C ke 1
et = Skl o= flnet), o) = (19
i A
e
d; can be expressed as,
1 ; .
8 =— (1 = &>f’(netf) in output layer, k = 3 (20a)
T Dy Py ‘

or

ij

S = (Zaﬁ“ﬁﬂ) f'(net¥) in hidden layers, k = 1,2 (20b)
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and f’(net/) is the first derivative of the activation function f(-) with respect to net}. The activation function
used in this study is a sigmoid function as shown in Eq. (19).

Vogl et al. (1988) and Luo and Hanagud (1997) proposed the improved methods to accelerate the
convergence of the MLP model by dynamically varying the learning rate # in training. The similar idea is
also employed in this study. The learning rate 7 is adjusted once every k, iterations instead of every iteration
as usually done for increasing the stability of the modified algorithm. Assuming that the learning rate for
the nth iteration is represented by #5(n), this learning rate will be adjusted at the (n + k,)th iteration based on
the following criterion:

n(n+ k) = en(n) (21
where the range of c¢ is selected in the following manner based on the numerical experiments,

c=11-13 if O0<e,(i) <&, i=1,2,...,k,
=0.7-0.9 if (number of negative e, (i), i=1,2,...,k,) = & (22)
=1.0 if else
The error rate e,(i) is defined as,
E(W"H, 0n+i) _ E(Wn+i+1 0n+i+1)

W (1) = : — i =1,2,...,k, 23
€ (l) E(Wn+1’9”+’) ! ( )

Numerical studies suggest that k, is selected between 10 and 50, ¢; between 0.001 and 0.01, and ¢, between
0.1k, and 0.5k,, respectively.

The change of weights, Aw , which is directly related to the training of the MLP model, is not only
dependent on the learning rate 1, but also on the partial derivative 0E(W,0) /aw (see Eqgs. (17)-(20)).
Riedmiller and Braun (1993) pointed out the possibility that the effect of the carefully adapted 7 can be
drastically disturbed by the unforeseeable behavior of the derivative itself. In fact, this problem mainly
comes from the possible saturation of sigmoid function, i.e., f ’(netk ) — 0, which leads to ()j — 0 and causes
the weight matrix to stagnate. To solve this potentlal problem a jump factor y is added to f ’(net") in Eq.
(20), so as to always maintain a non-zero value of 5 and thus prevents the weight matrix from stagnation.

. 1 Dj , . -
5 = (1 pt/,) {f (netf) + y} in output layer, k =3 (24a)
or
<Z(sk+1 k+1> { (netf) + y} in hidden layers, k = 1,2 (24b)

y varies during the training process. It is recommended to select between 0 and 0.5.
4.3. Training samples

Rogers (1994) indicated that in addition to the proper networks architecture and the efficient learning
algorithm, the selection of training samples is another key factor in obtaining a reliable MLP model for the
studied problem. Generally, an ideal set of training samples should be complete, i.e. be able to represent the
total sample space. That means the combinations of crack parameters in training samples should be able to
cover all the crack possibilities for this study.

One common method to this end is to use complete combination method (Manson et al., 1989). For
the cases where there are p crack parameters, and each parameter comes with ¢ discrete values, the
number of all the possible combinations is ¢”. Although the completeness of samples is guaranteed by
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these ¢” samples, the number is however prohibitively large and obviously impractical to include all the
samples for the complex engineering problems. Another simplified method with the similar idea is to use a
hypercube to cover the samples space (Manson et al., 1989), but the number of the required samples is
still larger. The linear method (Rogers, 1994) generates the training samples by starting at the lower
bound of each parameters and then stepping through the sample space at a given increment until reaching
the upper bound. It seems to be too simple for representing the sample space. Recently, Atalla and
Inmam (1998) suggested that the random generation of the characteristic parameters (i.e. the crack pa-
rameters in this study) within their variation ranges could produce a good training result. Levin and
Lieven (1998) proposed a two-part scheme. The first part consisted of assigning each parameter in turn to
one of the ¢ discrete values while giving all the other parameters to their respective nominal values. The
second part consisted of generating a given number of training samples by adjusting a random selection of
the p values by a random amount.

In this study, we adopt the OA method to generate the representative training samples. The OA was
originally developed for the experimentalists to reduce the number of experimental trials normally required
in a full factorial experimental design (Manson et al., 1989). With this OA method, only p(¢ — 1) + 1 rather
than ¢ combinations are required for representing the total sample space for the same case stated above, if
there is no interaction among the p parameters. The number p(q — 1) + 1, which is determined by the
corresponding OA L,(q”) where 4 = p(q — 1) + 1 (Besterfield et al., 1995), is significantly smaller than the
complete sample number of ¢”, especially when the number of parameters and/or their discrete values to be
considered are large. It is however able to guarantee the completeness of samples. In addition, as each
sample is orthogonal to the others among these p(¢ — 1) + 1 samples, the effect of each parameter on the
trained MLP model will tend to be accurate and reproducible.

A concrete configuration for the p(¢ — 1) 4+ 1 samples, i.e. a properly selected value of each parameter in
each sample, is implemented in the same strategy as what is done in quality engineering (Besterfield et al.,
1995).

Another difficulty related to the training samples is how to adjust the current sample data during the
retraining process of the MLP model. It is not straight forward to improve the accuracy of output of the
retrained MLP model by only further reduction of the permissible error norm. A reasonable solution would
be to continuously replace some unnecessary sample data by those newly generated ones that are expected
to be more close to the real solution of problem under investigation with the retraining process. These new
sample data are obtained from the output of the MLP model in the preceding retraining round and their
resulting displacement responses calculated from the SEM model. These replaced samples, (D;, P;), are the
ones that have the largest Euclidean distance /; from the measured displacement responses Dy,.

l; = |Dm = Dl (25)

It is obvious that the sample density around the real solution of problem increases as the retraining process
takes place. As a result, the modeling accuracy of the MLP model in the neighborhood of the real solution
would be improved.

Finally, the sample data are required to normalize based on the following formulation before used in the
training of the MLP model,

_ Xi — ﬁximm (26)

o aximax - ﬁximin

where x; . and x;mi, are the maximal and minimal values of parameter x in the sample data, respectively; x;
is the normalized value of parameter x ranging between 0 and 1. The coefficients are: o = 1.1, § = 0.9 (if
Ximin = 0) or 1.1 (if x; i < 0). This normalization ensures that the samples data would not be too close to 0
or 1 so as to avoid numerical difficulties during the training process.
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5. Numerical examples

The above proposed detection technique was examined using an anisotropic laminated plate denoted by
[C90/G +45/G-45],, where C and G stand for carbon/epoxy and glass/epoxy layers, respectively. The
number following the alphabet denotes the fiber orientation with respect to the x-axis, and the subscript s
denotes that the plate is symmetrically stacked. Material constants of carbon/epoxy and glass/epoxy are
given in Table 1.

Each layer in this plate was divided into four strips in thickness direction. The number of the total strips
is hence 24. The horizontal crack was assumed to locate at the junctions of two adjacent strip elements. The
time harmonic line load ¢, with amplitude g, = 1 and frequency @ = 3.14+\/cq/p/H was applied on the
upper surface of plate at x = 0. The surface displacement response was measured and used to detect
the crack in the plate.

For the sake of simplicity, the following dimensionless parameters were used in this study:

X cuw oH
—, =— w =
H 90 Ccas/p

(27)

ac
) aC:E7

Figs. 4-6 give the displacement response amplitudes in the vertical direction on the upper surface of plate
under different crack situations. By comparing Figs. 4 and 5, it can be observed that there is a “special
region”’, which results from the waves scattered due to the crack. It reveals the significant change in both
amplitude and pattern of the response within this region. This “special region” shifts horizontally in the
same direction as the crack moves. The effect of the crack location a. on the displacement response is thus
obviously exhibited. By comparing the Figs. 4 and 6, it can be observed that the maximal amplitude of the
response within the ““special region’ decreases with the increase of the crack depth d.. From each of these
three figures, the effect of the crack size /. on the displacement response can be observed. With the decrease
of [, the amplitudes of the oscillated displacement response within the “special region” obviously mitigate.
When /. =0, i.e. noncrack case, the “special region’ disappears. These observations demonstrate that
the information on the crack is indeed encoded by the surface response of the plate. This provides us
with possibility of using the surface response as the input of the MLP model to detect the cracks in the
plate.

In order to detect the possible shortest crack in horizontal direction and simultaneously avoid the over
complexity of the MLP architecture, the response amplitude at 34 selected nodes on the surface of plate
within the region from X = 0 to X = 10 were used as the input of the MLP model. Consequently, the number
of neurons in the input layer of MLP is 34, and the minimal length X;;, for the detectable crack is therefore
about 10H /(34 — 1) = 0.3H. The crack parameters a, d. and I, were used as the output of the MLP model,
so the number of neurons in the output layer of MLP is 3. Two hidden layers were employed in this study as
usually done (Chang et al., 2000). The number of neurons for the first and second hidden layers was initially
assigned to be 45 and 20, respectively.

To formulate the initial training samples, it was assumed that there were six levels of discrete values for
these three crack parameters @, d. and /. (Table 2).

Table 1
Material constants of the laminated plate
E, (GPa) E, (GPa) G, (GPa) Vi2 V23 p (glem’)
Carbon/epoxy 142.17 9.255 4.795 0.3340 0.4862 1.90

Glass/epoxy 38.49 9.367 3.414 0.2912 0.5071 2.66
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Fig. 4. Amplitudes of the displacement responses on the surface of plate (a. = 4H, d. = 4H/24).
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Fig. 5. Amplitudes of the displacement responses on the surface of plate (a. = 6H, d. = 4H/24).
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Fig. 6. Amplitudes of the displacement responses on the surface of plate (a. = 4H, d. = 8H/24).

Table 2
The discrete values of crack parameters
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
a, 0 1 3 5 6 8
d. 2/24 4/24 8/24 12/24 16/24 20/24
1. 0.3 0.6 0.9 1.2 1.5 1.8

It would need a total of 6° =218 combinations to cover all the crack possibilities by applying the
complete combination method for this case. However, based on the OA method proposed in section 4.3 and
employing the corresponding OA L4(6°), only 3 x (6 — 1) + 1 = 16 combinations were required to cover
the whole sample space. To further reinforce the sample set, it was decided to add six samples that come
from varying each crack parameter to its extreme value in turn while keeping other two crack parameters at
their reference values.

The SEM was used to calculate the displacement response on the surface of plate for each of these 22
combinations so as to generate 22 initial samples. These samples were then normalized by Eq. (26) and used
for the training of the initially designed MLP model above. The modified BP learning algorithm with the
initial n = 2.0, o = 0.5, y = 0.05 outlined in Section 4.2 was used in this training. The number of neurons in
two hidden layers was also adjusted according to the criterion described in Section 4.1. Finally, the number
of 24 and 9 was obtained for first and second hidden layers, respectively. For this optimized MLP archi-
tecture, the given convergence criterion was fulfilled after 7032 training iterations. The convergence of the
error norm E(W,0) within the first 5000 iterations is shown in Fig. 7.
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Fig. 7. Convergence of the MLP model in training process.

5.1. Response data without noise

To validate the proposed technique, four simulated crack cases were introduced in this plate: (1)
a.=45,d.=4/24,1.=0.5;,2)a. =7,d. =4/24,1.=1;3)a. =4.5,d. = 8/24, [, = 0.5; and (4) a. = 7,
d. =8/24, 1. = 1.0. All these cases have not been involved in the training samples for examining the de-
tecting capability of the trained MLP model. The resulting displacement responses on the surface of plate
calculated from the SEM model with these cracks were simulated as the measured responses (Fig. 8). These

0.5
Case 1
0.4 ——— Case2
— - — Case3

Displacement response amplitude

XH

Fig. 8. Displacement response amplitudes on the surface of plate which are used as the input of the MLP model.
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Fig. 9. Changes of the difference Eu between the calculated and the simulated displacement response amplitudes.

simulated responses were used as the inputs of the trained MLP model to reconstruct these crack pa-
rameters.

The first reconstructions of crack parameters were immediately obtained by feeding the simulated re-
sponses into the trained MLP model for four crack cases. In order to examine the accuracy of the output
from the MLP model, these reconstructed crack parameters were then put into the SEM model to calculate
the surface displacement responses of the plate. It can be found from Fig. 9 that these calculated responses
are significantly different from the simulated ones in terms of Eu for all the four cases. In fact, the maximal
error for the reconstructed @, d. and . was as high as —23.44%, —22.34%, —24.94% and —22.98% for the
four cases, respectively. Obviously, the reconstructions were not acceptable. The retraining procedure for
the MLP model outlined in Section 2.2 was thus required. Four new samples were consequently generated
from these reconstructed crack parameters and the resulting displacement responses calculated from the
SEM model. These new samples were then put into the original sample set while four selected samples were
simultaneously canceled out. The MLP model was retrained with the adjusted sample set, and then used to
reconstruct the crack parameters again. With the progress of this retraining process, the displacement
responses calculated from the SEM model with the reconstructed crack parameters became more and more
close to the simulated ones. As one of examples, Fig. 10 shows the evolution process of the calculated
displacement response amplitudes for case (2). After three times of retraining, the displacement responses
calculated from the reconstructed crack parameters were likely very close to the simulated ones for all the
four cases. Further retraining for the MLP model did not seem to significantly decrease the Euclidean
criterion Fu, which quantitatively depicts the difference between the calculated and the simulated dis-
placement response. The maximum error of the reconstructed crack parameters with respect to their
assumed values decreases to —5.03%, —4.92%, —6.84% and —5.43%, respectively. Fig. 11 shows the con-
vergence of these crack parameters during the reconstruction process. The convergence of the error norm
E(W,0) for the MLP model during the three times of retraining was also shown in Fig. 7. The numerical
simulated results demonstrated that the trained MLP model could correctly detect both the location (de-
noted by @. and d.) and the length (I.) of crack hidden in the anisotropic laminated plates where no noise
is assumed in the response data.
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Fig. 10. Evolution process of the calculated displacement response amplitudes.

5.2. Response with noise

To further examine the applicability of the proposed technique for the practical problems where the
noise is inevitable in the measured data, the displacement response data acquired from the SEM model were
involved with the simulated noise. The noise was generated from a random sample of Gauss distribution
with the mean value a = 0 and the variance b given by

a 1/2
b= p. [; (Zx?)] (28)

where p, is the given noise level, x; is the displacement response amplitude at node i (i = 1,...,n), n is the
node number (#n = 34 in this study).

For comparing the output from the MLP model using these noisy data as input with that of the non-
noise cases, the location and length of cracks assumed in case (1) and case (4) outlined above were re-
constructed again. The noise levels of 5% (p, = 0.05) and 10% (p, = 0.1) were given by Eq. (28) and the
Guass-random generator for these two cases, respectively. They were then added into the response data
simulated from the SEM models. The overall response data with noise were put into the trained MLP
model for reconstructing the crack parameters.

Similar to the analysis process outlined in Section 5.1, the first batch of reconstructions from the MLP
model for both case (1) and case (4) were not satisfactory. The retaining of the MLP model was then
conducted. After four times of successive retraining, the maximal error of crack parameters reconstructed
from the MLP model for case (1) converged to —5.03%, —6.14% from —27.61%, —28.42% for the response
data with 5% and 10% involved noise, respectively. For case (4), it converged to —6.36%, —6.81% from
—27.89%, —29.83% for the same two noise levels, respectively. These reconstructed results are shown in Fig.
12. Based on the results, it is found that the satisfactory reconstruction of the crack parameters is possible
from the trained MLP model even if the input is involved with some noise. Of course, more times of re-
training for the MLP model would be required.
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Fig. 11. Errors of crack parameters detected by the trained MLP model without noise in the response data.

5.3. Comments on the numerical results

From Figs. 4-6 and Figs. 11, 12, the following two remarks can be drawn:

(1) Accuracy of the reconstructions from the trained MLP model depends significantly on the sensitivity
of the displacement response on the plate surface to the variation of the location and length of cracks. As
the longer and shallower the crack is, the more significant the distortion would be in the surface dis-
placement response. Consequently, the better accuracy could be obtained in reconstructing the crack pa-
rameters. It is seen in cases (2) and (3), where case (2) has the highest accuracy and case (3) is the lowest
among those 4 simulated crack cases.

(2) The proposed MLP technique can withstand the presence of the noise in the response data. This
comes from the inherent property of NN techniques, and is known as one of the main advantages of the
NN in comparison with the traditional techniques in engineering applications. As the noise inevitably
presents in the measured response, robustness in accommodating the noisy response data is usually vital for
the successful application of the detection techniques in real engineering.
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Fig. 12. Errors of crack parameters detected by the trained MLP model with noise in the response data.

6. Conclusions

In this study, an adaptive MLP networks technique for the detection of cracks in anisotropic laminated
plates is proposed. The excited displacement response on the surface of plate is used as the input of the
adaptive MLP model. The crack parameters, i.e. the location and size of cracks, are used as the output of
the MLP model. This MLP model is first trained using the elaborated sample data that contain some types
of crack cases and the resulting displacement responses on the plate surface calculated from the SEM
model. Several improved numerical methods are proposed to facilitate this training process. The correlation
analysis for the outputs of neurons in the hidden layers of MLP is carried out to optimize the number of
neurons in each hidden layer. A modified BP learning algorithm with a dynamically adjusted learning rate
and an additional jump factor is developed to tackle the possible oscillation and stagnation in training
process so as to speed up the convergence of the MLP model. The concept of OA is adopted to generate the
representative combinations of crack parameters in order to significantly reduce the number of training
samples while maintaining the completeness of sample data. This trained MLP model is then used to re-
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construct the crack parameters by feeding in the measured surface displacement response. The recon-
structed crack parameters are further examined by checking whether or not the calculated surface dis-
placement response from the SEM model with these reconstructed crack parameters match satisfactorily
the measured ones. If not, the MLP model would go through another round of retraining until the satis-
factory match is reached.

The proposed technique was verified numerically using an anisotropic laminated plate [C0/G +
45/G-45], with four types of horizontal cracks located at the different location and with different length.
The simulated surface response with and without noise was used as the input of the trained MLP model to
detect these cracks. By retraining the MLP model, the reconstructions of crack parameters were gradually
improved to the required accuracy for all the simulated cases.

Based on this study, some observations on the detection of cracks in anisotropic laminated plates using
MLP technique can be drawn as follows:

(1) The MLP technique is very effective for the detection of cracks in anisotropic laminated plates. One
of its advantages is the feasibility for the application in real engineering. Just applying a time-harmonic load
on the surface of plate and simultaneously measuring the surface displacement response, the cracks hidden
in the plate could be successfully detected. Another attractive feature is its robustness in accommodating
the presence of noise in the response data, which is vital to the practical applications.

(2) This detection technique can be effectively implemented with the help of the developed numerical
methods. SEM provides an effective approach to calculate the scattered displacement response due to
cracks or flaws, the sample data required for the training of the MLP model are thus able to obtain nu-
merically with the satisfactory accuracy. The correlativity analysis method for adjusting the number of
neurons in hidden layers of MLP, the OA method for optimizing the sample set, and the modified BP
learning algorithm for speeding up the convergence of MLP provide the solid technical support for the
implementation of the MLP model in engineering.

(3) From the numerical examinations, it is seen that the accuracy of output from the MLP model im-
proves with the increase of the retraining process. The required accuracy can be reached theoretically by
increasing the times of retraining. However, it requires more computational effort. Judgment shall be ex-
ercised for a particular crack detection in the real applications.
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Appendix A

Coefficient matrices in Egs. (3) and (9)

c Ch13 1 2¢h1- cz t+ ¢ Ci33  Ci3
Diy = [ k11 k13 ]’ Diy =~ { k13 k33 m} Dy, = { k33 k23:|
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